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A turbulent diffusion model in which the velocity field is Gaussian and rapidly
decorrelating in time (GRDT) has been widely used recently in an endeavor to
understand the emergence of anomalous scaling behavior of physical fields in
fluid mechanics from the underlying stochastic partial differential equations.
The utility of the GRDT model is the fact that correlation functions of the
passive scalar field solve closed partial differential equations; the usual moment
closure obstacle is averted. We study here the sense in which the GRDT model
describes turbulent diffusion by a general, non-Gaussian velocity field with
nontrivial temporal structure in the limit in which the correlation time of the
velocity field is taken to zero. When the velocity field is rescaled in a particular
manner in this rapid decorrelation limit, then a limit theorem of Khas'minskii
indeed shows that the passive scalar statistics are described asymptotically by
the GRDT Model for a broad class of velocity field models. We provide,
however, an explicit example of a “Poisson blob model” velocity field which has
two different well-defined rapid decorrelation in time limits. In one, the passive
scalar correlation functions converge to those of the GRDT Model, and in the
other, they converge to a distinct nontrivial limit in which the correlation func-
tions do not solve closed PDE’s. We provide both mathematical and heuristic
explanations for the differences between these two limits. The conclusion is that
the GRDT Model provides a universal description of the rapid decorrelation in
time limit of general non-Gaussian velocity field models only when the velocity
field is rescaled in a particular manner during the limit process.

KEY WORDS: Turbulent diffusion; Kraichnan model; Poisson process; con-
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1. INTRODUCTION

A fundamental obstacle to the analytical understanding of turbulence is the
moment closure problem. An attempt to write down an equation of evolu-
tion for some statistical moment of the velocity field will, due to the advec-
tive nonlinearity, involve statistical moments of higher order."-» Therefore,
one cannot in general obtain a system of closed equations for any finite set
of statistical moments of the velocity field. These moments are of interest,
however, because they possess anomalous scaling properties. More preci-
sely, moments of velocity differences over some distance scale with the
distance variable with some power not predictable by dimensional analy-
sis.®™ This raises the question of how these anomalous scaling properties
can be understood analytically from the Navier-Stokes equations.

The difficulty of the nonlinearity inherent in the Navier-Stokes equa-
tion has led investigators to consider the anomalous scaling problem in the
simpler context of a passive scalar field. The evolution of a physical field
T(x, t), such as the concentration density of small particles or small tem-
perature fluctuations, which is passively advected by an incompressible
flow can be modeled by the advection-diffusion equation:

oT(x, t) . _
T+V(X, 1) -VI'(x,t)=x AT(x, 1)+ (X, 1), O

T(x,t=0)=Ty(x).

where x is the molecular diffusivity of the passive scalar field and f(x, ?) is
an “pumping field” which models an external input of fluctuations in the
passive scalar field. The moments of the passive scalar field increments

(T(xA+1, ) =T(x, )" @

have also been found to exhibit anomalous scaling for separation distances
r in the inertial range.®® The linearity of the advection-diffusion equation
suggests a more promising avenue for an analytical understanding for how
a solution to a stochastic PDE should exhibit anomalous scaling. There
would of course be no simplification of the analysis if the velocity field
v(x, t) were to be taken as the solution to the randomly driven Navier—
Stokes equations. Instead, one models the v(x, ) as a random field with
prescribed statistics which mimic in at least some ways the observed spatio-
temporal structure of fully developed, homogenous, isotropic turbulence.
The pumping field f(x, ¢) is also typically taken to be described by a sta-
tistically isotropic random field fluctuating on large scales relative to the
inertial range.
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The moment closure problem arises again, however, because an
attempt to deduce a PDE for the Nth order passive scalar (PS) correlation
function

Py({x} 0= < ﬁ T(x2, t)>

from the advection-diffusion equation (1) will involve higher order correla-
tion functions of the form

<v(x(f'), 1) ﬁ T(xY, t)>,

i=1

and again there is no general way to close the hierarchy of equations for
the correlation functions. This moment closure problem manifests the
hidden nonlinearity of the advection-diffusion equation (1): while it is
indeed linear in 7'(x, t) for every realization of v(x, ¢), the statistics of the
solution 7'(x, ¢) depend nonlinearly on the statistics of the random coeffi-
cient v(x, t).

There does however exist a special random velocity field model for
which the turbulent diffusion closure problem can be averted. Suppose the
velocity field v(x, ¢) is a Gaussian random field which is mean zero, statis-
tically homogenous, and delta-correlated in time:

v(x, 1)) =0,
<v(X, 1) @ v(X+r, t+71)> = A(r) i(7).

Suppose further that the random pumping is also a Gaussian random field
which is mean zero, statistically homogenous, and delta-correlated in time:

Sf(x, 1)) =0,
(%, 0 ® f(x+1, 147)) = B(r) 5(7).

We call this the Gaussian Rapid Decorrelation in Time (GRDT) Model
for the advection-diffusion of a passive scalar field. It is often called the
Kraichnan model after one of its original proposers.® (Kazantsev” inde-
pendently suggested such a model for a magnetohydrodynamic turbulent
flow.) With this GRDT Model, one can derive a closed hierarchy of
PDE’s for the correlation functions of the passive scalar field to arbitrary
order:
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aPN({X(i)}?; "))
ot

) 1 . , )
= %NPN({X(I)}?;U t)+§ Z @(X(”—X(’ )) PNfz({X(l)}i#j,j'a 1. (3a)

J#
with the differential operators:

N N
My =K Zl Aj+% Z 1 Vo (2(xP—xY)-V,). (3b)
Jj= L] =

It is to be understood that P, =0 and P, =1. V; and 4, denote dif-
ferentiation with respect to the coordinates of the jth particle. These equa-
tions are recursively solvable, in the sense that they may in principle be
solved one by one without ever having to contend with a simultaneous
system of multiple PDE’s. The mean statistics P, (x, ) may first be solved
since they are decoupled. Then the equation for the second order statistics
P,(x,t) may be solve since it is coupled only to P,(x, ¢), which has just
been obtained. And one can continue to recursively solve for P, using the
solutions for P, --- Py_,. This simple coupling of the PS correlation func-
tions is completely different from that which arises in standard turbulence
theory, where the equation for Py requires knowledge of a higher order
statistical quantity rather than a lower order one.

The possibility of writing down closed equations for the correlation
functions in the GRDT Model was pointed out in refs. 6, 8, and 9.
Majda? used these equations to describe the higher-order statistics of
freely decaying passive scalar fluctuations within the inertial range of a
turbulent GRDT shear flow model. Kraichnan? then advanced argu-
ments that the passive scalar increments (2) should exhibit anomalous
scaling within the GRDT Model, igniting vigorous activity by several
research groups to elucidate these anomalous scaling properties directly
from the exact equations (3b) for the PS correlation functions in the
GRDT Model (see refs. 12-16 and other references in ref. 17). Similar
Gaussian velocity field models with rapid decorrelation in time have been
explored to study properties of the tails of the single-point distribution for
the passive scalar field."®?» Other properties of passive scalar fields in the
GRDT Model are examined in refs. 23-25.

There exist a variety of formal derivations of the equations (3b) and
special cases thereof.® 2262 A fundamental difficulty in achieving a
rigorous derivation is the need to make sense of the advection-diffusion
PDE (1) with a random coefficient v(x, #) which only exists as a generalized
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random field, due to its delta-correlated nature. Perhaps the most satisfac-
tory way to make rigorous sense of the GRDT Model without introducing
approximating sequences is to interpret the velocity field as a Brownian
flow®? and to represent the solution to the advection-diffusion equation
in terms of the statistics of the trajectories of tracers moving through a
Brownian flow and undergoing an additional independent Brownian
motion due to molecular diffusion.®!3?

In the original work,® Kraichnan interpreted the GRDT Model as
describing a limit of a velocity field with short but finite correlation time.
Our aim in this paper is to add some rigorous clarification to this point of
view. Some work along these lines has been accomplished by Majda® and
Molchanov et al.,®* who obtained the equations for the passive scalar
correlation functions in the GRDT Model (with no pumping) as a limiting
description for a certain class of velocity field “renewal” models as the
correlation time was taken to zero while the amplitude of the velocity was
rescaled to infinity. We will show in Section 2 that in fact the GRDT
Model equations do generally arise as a rapid decorrelation in time limit of
a broad class of random non-Gaussian velocity field models for v(x, ¢) with
nontrivial temporal correlations, provided that this rapid decorrelation in
time limit is performed according to the following rescaling:

vO(x, £) = e 2v(x, t/¢),
fOx0)=¢""f(x,t/e).

with & \y 0. The example of refs. 8, 9, and 33 does fall in this class. One may
be tempted from this fact to conclude that the GRDT Model universally
describes the advection of a passive scalar field by a velocity field with very
short correlation time. That is, one might suppose that the specification
that the GRDT velocity field is Gaussian is gratuitous, since the equations
of the GRDT model also describe the short correlation time limit of a large
class of non-Gaussian models.

Our aim in this paper is to scrutinize this notion of universality in
the rapid decorrelation limit in the context of a Poisson Blob Shear Flow
Model,®® which we will define in Section 3. We shall show that the manner
in which the rapid decorrelation limit of a given velocity field is taken can
strongly influence the limiting behavior of the passive scalar statistics. We
will explicitly compute two distinct limits of the PS correlation functions
arising from the Poisson blob Model which each correspond to advection
by a random velocity field with rapid decorrelations in time. Moreover,
the second order correlation functions of the velocity field coincide in the
two limit processes. Each yields a nontrivial limit for the PS correlation
functions, one of which corresponds to the GRDT Model, while the other

4)
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is manifestly different. Thus, when discussing the effects of a rapidly
decorrelating velocity field on a passive scalar, one must be careful to
specify how the short correlation time limit of the velocity field is to be
interpreted. Thus, the rapid decorrelation limit of the passive scalar statis-
tics is not universal with respect to different ways of taking the zero corre-
lation time limit.

The veteran probabilist can understand this outcome via the Levy—
Khinchine theorem (see Section 5.5). A velocity field in any zero correla-
tion time limit should generate a flow with independent increments. In
particular, tracers advected by the flow should be described by a process
with independent increments. In a homogenous, stationary flow, a single
tracer will moreover move according to a process with stationary, inde-
pendent increments. Such processes are completely characterized by the
Levy—Khinchine theorem. The key fact is that such a process is a combi-
nation of a mean drift, a Brownian motion, and a generalized Poisson type
motion. In rapid decorrelation limits which converge to the GRDT model,
the tracer trajectories converge to Brownian motions. But in the rapid
decorrelation limit of the Poisson blob model which produces a distinct
limiting behavior, the tracer trajectories have a Poissonian component. The
derivation of the GRDT model equations in refs. 31 and 32 specifically
require that the tracers diffuse according to Brownian motion processes,
and does not carry over when the tracers have Poissonian behavior.
Indeed, one can show by our simple example that the passive scalar corre-
lation functions in the alternative zero correlation time limit are not
governed by a PDE, but rather by a pseudo-differential evolution equation
(Section 5).

The sense in which the Gaussian Rapid Decorrelation in Time Model
does universally describe the statistical behavior of passive scalar fields
advected by non-Gaussian velocity field models with nontrivial temporal
structure under the particular limit process (4) with correlation time tending
to zero is presented in Section 2. In Section 3, we define the Poisson Blob
Shear Flow model and define two rescalings leading to different rapid
decorrelation in time limits. A discussion of the different physics of the two
limits follows in Section 4. The mathematical statement of the limiting
behavior of the PS correlation functions is presented and contrasted in
Section 5. The computations and justifications may be found in Sections 6,
7, and 8. A review of some basic properties of the Poisson point process
which we will need is presented in Appendix A. Some auxiliary lemmas are
stated in Appendix B.

To avoid distractions from our main point of interest, we consider
only smooth velocity field models (with two continuous derivatives), such
as velocity field models corresponding to positive viscosity.*!"**3% Fractal
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velocity field models with no dissipation scale cutoff, as are often used
in anomalous scaling studies'*2%%"-34) are only Holder continuous and
do not satisfy the smoothness conditions assumed in the present work.
However, we expect that the smoothness conditions we impose are not
essential, and that fractal velocity field models would also exhibit, in close
analogy, multiple distinct rapid decorrelation in time limits.

Let us also stress that the behavior which we derive for the tracer
trajectories in the short correlation time limit of the velocity field is not
equivalent to fixing the temporal structure of the velocity field and then
looking at the tracer trajectories at long times. The reason is that the rapid
decorrelation in limits which we consider (such as (4)) involve no rescaling
of the spatial scales. By contrast, the evolution of tracer trajectories in

a given velocity field will at long times generally involve large spatial
scales, (3% 35.42.43)

2. UNIVERSALITY OF GRDT MODEL UNDER DIFFUSIVE
RESCALING LIMIT

We address here the positive sense in which the RDT model equations
describe not only the statistical behavior of the passive scalar field in a
truly delta-correlated velocity and pumping field environment, but also the
behavior in models with finite correlation times, in the limit that the corre-
lation time is sent to zero. Suppose we are given a model velocity v(x, ?)
and pumping field f(x,t) which are statistically homogenous in space,
stationary in time, and have mean zero, but which may be non-Gaussian
and decorrelate in time at a finite rate. One can show that under the par-
ticular rescaling:

vO(x, 1) =¢e7'v(x, t/e),

fOx ) =e2f(x, t/e)

)

the evolution of the passive scalar correlation functions associated to these
rescaled fields converge as ¢ \ 0 to functions obeying the GRDT model
PDE’s, provided certain technical conditions are met (see below). The rela-
tionship between the spatial correlation structures £(r) and @(r) of the
limiting GRDT Model velocity and pumping fields are related to the
second order correlation functions of these fields in the original model:

A(r, 1) = (VOX, 1) ® VO(X+T, +7)),

_ (6a)
D(r,7)=<{f(X, 1) f(xX+T1,t+7)),
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in the following way:

R(r) = j_w A, 7) d,
i (6b)
&(r) = f &(r, 7) d.

The rescaled velocity and pumping fields vary on a time scale &, so
the &\ 0 limit is equivalent to rescaling the correlation time of these fields
to zero. The amplitude rescaling is necessary for these fields to have a non-
trivial effect on the passive scalar field in the ¢ » 0 limit; see Section 4.
The particular rescaling displayed in (5) will be called a diffusive rescaling
because the amplitude of the velocity field is rescaled according to the
general link between space £ and time 7 scales in diffusion processes:

T — AT,
L A%,
v AV,

The latter transformation is suggested by the dimensions of the velocity
field as length divided by time. Note that the diffusive rescaling does not
alter the spatial argument of the velocity field statistics, so the spatial cor-
relation length (if it exists) remains untouched. We refer to the limiting
behavior of the passive scalar field in a given model under the &\ 0 limit
with the velocity and pumping field as rescaled in (5) as the diffusive rapid
decorrelation in time (DRDT ) Limit.

2.1. Rigorous DRDT Convergence Criterion

We formulate now a theorem providing conditions on the velocity
field which rigorously guarantees that the PS correlation functions con-
verge to solutions of the GRDT Model in the DRDT Limit in the absence
of pumping f(x,¢)=0. There is a natural formal extension to include
pumping, but extra technicalities enter which we do not wish to dwell on
here.

One natural condition required for convergence to the GRDT Model
under the rescaling (5) is that the velocity field obey a certain “mixing
condition” which effectively guarantees that the velocity field in the
unrescaled model loses memory at some sufficiently rapid (but finite) rate.
To describe one frequently used measure of mixing,“ we introduce the
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probability measure P and corresponding o-field # of measurable sets on
the underyling abstract probability space Q2. We further define the filtra-
tions {Z , } for s < s as the g-subfield of # generated by the restriction of
the random velocity field v(x, ¢) to the interval s <t <s'.“? Colloquially
speaking, the filtration & , comprises those events which depend on the
velocity field only through its behavior over the time interval s <z <s'. We
can now define the uniform mixing rate

¢(1) = sup sup |P(4|B)—P(A4)],

520 AeFy o, BeF

where P(A | B) denotes the conditional expectation of event 4 given event B.
The rate of decay of ¢(z) describes how quickly the velocity field loses
memory. ¢(¢) vanishes over times ¢ > 7 in renewal models, such as those
considered by Majda®®® and Molchanov et al.,*® where the velocity field
completely refreshes after a certain time interval 7.

Theorem 1. The PS correlation functions corresponding to a mean
zero, incompressible velocity field with general statistics (and zero pumping
f(x,t) =0) converge under the DRDT scaling (5) to the solutions of the
GRDT Model equations with coefficients determined by Eq. (6b), provided
that:

1. Forevery M >0,

Csup [IV(x, DI +[Vv(x, DI +HIVVV(x, DII*T> < oo,

x| <M

2. the velocity field has the following uniform mixing property:

J, @) ds <o,

3. the initial PS correlation functions Py o({x’}) are bounded and
continuous.

This theorem follows by applying a technical improvement (ref. 46,
Theorem 4.2) of Khas'minskii’s classical limit theorem®” for ODE’s with
random coefficients with fast time dependence to the system of stochastic
differential equations:

dX @ U(s) =g 2v(X@U(s), s/e) ds+/ 2k AW(s)

describing the joint trajectories {X® Y(#)}I_, of N particles advected by
the rescaled velocity field, where {W(#)}/_, are N independent Brownian
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motion (Wiener) processes. This limit theorem implies, under suitable
mixing and smoothness conditions that the limiting behavior of the N par-
ticles as ¢\ 0 is governed by a coupled Brownian motion process. The
statistical laws for the joint motion a system of N particles can be mapped
to an evolution law for the Nth order PS correlation function Py({x"}, 1)
through the theory of 1t6 diffusion processes.®*"*® From this, one infers the
GRDT Model equations for the PS correlation functions (3b). We remark
that the limit theorem of ref. 46 actually needs to be applied to the com-
pensated trajectories X© (f)(s)—\/ZTC W@(s), which solve a modified
random ordinary differential equation without a white noise term dWY(s);
the limiting behavior of these compensated trajectories will then of course
imply a corresponding limit for the original trajectories X© )(s). A varia-
tion of Theorem 3 can be formulated to apply to velocity field models with
weaker mixing but stronger smoothness assumptions by adaptation of
Theorem 4.6 in ref. 46.

Another way of deriving propositions concerning the limiting behavior
of the PS correlation functions under the rescaling (5) is through direct
estimates on the advection-diffusion PDE in a “parametrix’ approach; see
refs. 8 and 49. Another analytical PDE approach is presented in ref. 50 for
the case in which the original unscaled velocity field v(x, ¢) is Markovian in
time and Gaussian.

2.2. Heuristic Perspective

Note that the diffusive rapid decorrelation in time (DRDT) limit of
the PS correlation functions stated above involves only the mean and
second order statistics of the original random velocity field. The higher
order statistics are asymptotically irrelevant. The reason for this result may
be explained in terms of a “central limit theorem in the environment.” Let
us explain this phrase. The key notion behind the central limit theorem is
that the probability distribution of a sum of a large number of indepen-
dent, identically distributed random variables has an asymptotically uni-
versal (Gaussian) form which depends only on the mean and variance of
the random variables, i.e., the first and second order statistics. Consider
now the environment felt by a tracer particle moving through a fluid in
which the velocity and pumping is rapidly decorrelating in time at some
small value of ¢ in (5). Over any short, finite time interval, the tracer will
feel a large number of independent pushes by the velocity field because the
correlation time of the velocity field is very small. These pushes will be
roughly identically distributed over sufficiently short time intervals (inde-
pendent of &) so that the tracer hasn’t moved too much. The cumulative
influence of these pushes is thus like a sum of a large O(¢~') number of
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independent random variables. One might thus expect a central limit
theorem to hold here, so that the influence of the random velocity field on
a tracer particle over a short time interval is captured entirely by the mean
and second order statistics of the random velocity field.

This argument is readily generalized to the joint motion of a finite
collection of particles in that over small time intervals (independent of ¢),
the displacements of the tracer particles should be approximately described
by a jointly Gaussian distribution. The reason why this statement is not
exact when considering the joint motion of a collection of particles is that
their motions are coupled due to their response to the spatially correlated
velocity flow field v(x,t), and this coupling depends on their relative
separation which of course changes as they move. Thus, over time scales
such that the particles move a distance comparable to their separation, the
central limit theorem argument does not apply since the independent
random relative pushes on two particles from the velocity blobs will not be
identically distributed over the whole time interval. But by considering suf-
ficiently small time intervals (independent of &), one does deduce from the
central limit theorem argument that the response of the tracer particles to
the velocity field depends only on the mean and second order statistics.

None of the above arguments suggest that the passive scalar field itself
is Gaussian in the DRDT limit, and such a supposition is false. Note also
that we are not discussing a homogenization result, ref. 17, Section 2,
because the spatial variable x is not rescaled.

3. TWO DIFFERENT RAPID DECORRELATION LIMIT PROCESSES
FOR POISSON BLOB SHEAR FLOW MODEL

In the remainder of the paper, we will show that the universality result
for the GRDT Model discussed in Section 2 does not imply that the GRDT
Model describes all rapid decorrelation in time limits of passive scalar field
advection-diffusion models. The convergence to the GRDT Model is
guaranteed through use of Theorem 3 only if the rapid decorrelation limits
of the velocity and pumping fields are taken through the diffusive rescal-
ings (5). It will suffice for our purposes to consider the case of a freely
decaying passive scalar field with no pumping f(x, ¢) = 0 in what follows.

3.1. Poisson Blob Shear Flow Model

We now introduce a Poisson Blob Shear Flow model, developed by
Avellaneda and Majda,®® to illustrate explicitly the possibility of a distinct
rapid decorrelation in time limit for which the passive scalar field statistics
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are not asymptotically described by the GRDT Model. The velocity field in
this model is taken to be a random, two-dimensional shear flow:

=[] 0

(x, t)]

The statistics of the shearing component are described as follows. Define ¢
to be some spatio-temporal “blob” structure function with zero integral:

Eo j: d(x, 1) dx dt = 0. (8)

To minimize technical considerations, we further suppose that ¢ is smooth
(C? is amply sufficient) with compact support. The shear flow is then built
out of a superposition of these spatio-temporal blob functions, with centers
distributed according to a Poisson point process (£{”, 7{?) in Rx R with
intensity A:

o(x, 1) =3, p(x—E&P, t—1") (€)

Roughly speaking, a Poisson point process of intensity A lays down points
randomly so that the expected number of points in any domain of area 4
is A4, and the number of points appearing in any two disjoint domains are
statistically independent. See Appendix A.1 for a formal definition. Further
discussion may be found in ref. 51.

3.2. Two Different Rescalings of Poisson Blob Model

We next explicitly construct two different one-parameter rescalings of
a given Poisson blob model for the velocity field. Each will have a natural
parametric limit process associated to the correlation time becoming arbi-
trarily small.

3.2.1. Diffusive Rescaling

The family v (x, ¢) of Poisson blob models with diffusive rescaling is
defined:

v (x, ) =Y ¢5 (x =&, 1—1%) (10)

where the intensity of the Poisson point process (£, 1)) is taken as ¢,

and the rescaled blob functions are defined: ’

¢8(x, 1) =& 2P(x, t/e), (11)
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where ¢ is some fixed prototype blob function satisfying the technical con-
ditions stated above. The reason we call this a diffusive rescaling is because
it is statistically equivalent to rescaling (5) discussed in Section 2. To see
this, write:

vO(x, 1) = PP(x—EM, t/e—1™ [e).

Here (£™,7) denotes a Poisson point process of intensity ¢'. By
stretching the distribution of points along the 7 direction: (™, e 7't™), it
is easily checked from the characterizing features of a Poisson point process
(Appendix A) that a Poisson point process of unit intensity (£, ™)
results. Hence, the statistics of v (x, r) may be equivalently described:

V9(x, 1) = 2Pp(x =&, t|e—FT™) = eV 0(x, t/¢), (12)

as we desired to show. From Theorem 3 in Section 2, we can deduce that
the passive scalar statistics resulting from the Poisson blob velocity field
rescaled as in (10) will be well described by the GRDT model as ¢ \ 0. (The
required mixing condition of the velocity field is easily satisfied due to the
compact support of the Poisson blobs.) To facilitate comparison with the
other rapid decorrelation in time rescaling which we will consider, we
provide a proof of convergence of the Poisson blob Model to the GRDT
model under the diffusive rescaling (10) through explicit computation in
Section 7.

3.2.2. Fixed Intensity Rescaling

The family of Poisson blob models with fixed intensity rescaling,
v 0x, 1) =Y, PR (x—EP, 1—1®), (13)

is defined with the intensity of the Poisson point process (¢™, ™) fixed at
unity and the amplitude of the blob function rescaled from the prototype ¢
in a fashion different from Eq. (11):

PO (x, 1) =& '9(x, t/e). (14)

The label “D” will refer to various random fields associated with the
diffusive rescaling and the label “FI” will refer to the fixed intensity rescal-
ing. At ¢ = 1, both models coincide with the unscaled Poisson blob velocity
field:

v(x, ) =) p(x—E&P, 1 —7™)
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where the Poisson point process (¢, ™) has unit intensity. We call the
limiting behavior of the passive scalar statistics in the ¢ —» 0 limit under
diffusive rescaling the diffusive rapid decorrelation in time (DRDT) limit,
and under fixed intensity rescaling the fixed intensity rapid decorrelation in
time (FIRDT ) limit.

3.3. Equivalence of Mean and Second Order Statistics of Velocity
Field in Two Limits

We now show that, for any &, the mean and second order correlation
function of the Poisson blob model velocity field coincide under the two
rescalings, and therefore have identical ¢ \ 0 rapid decorrelation in time
limits. The mean of all rescaled velocity fields vanish identically because of
Corollary 11 in Appendix A and the zero integral condition (8) on the blob
functions ¢. Let

R(x, 1) =<v(x', ) v(x+x, t+1))
denote the correlation function of the random velocity field, which is easily

checked to be statistically homogenous in space and stationary in time.?
Then using Corollary 12 in Appendix A, we find:

R(x, 1) = f: j: d(x', 1) p(x+x', t+1') dx' dt,
RO(x, 1) = @', ") v (x+x', t+1'))
—¢! fw fw PO, 1) $O (x+x', t+1') dx’ dt’
=&e"'R(x, t/e),
RE(x, 1) = R (X, ) v (x+X', 1+1))
=Eo fw PE (X', 1) ¢ (x+x', t+1") dx' dt’
=g 'R(x, t/¢). (15)

Thus, the mean and second order statistics of the Poisson blob velocity
field coincide under both rescalings, and the second order correlation
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function moreover converges to a delta-correlated form in the sense of
generalized functions as & \ 0:

lim RY(x, ) =lim R®(x, t) = R(x) é(¢),
eNo0 eNo0

R(x) = J °°w R(x, 1) dt (16)

— f’w fw fw d(x', 1) p(x+X', t+1') dx' dt’ dt

We note for future reference that R(x, f) and R(x) are clearly smooth and
of compact support since the blob functions ¢ have these properties.

Although the first and second order statistics of Poisson blob velocity
fields under both rescalings have been found to agree, the higher order sta-
tistics of the velocity fields must differ because the rescalings are different.
Indeed, in Section 5, we exhibit the exact statistics of a freely decaying
passive scalar field advected by a Poisson blob velocity field in both the
DRDT and FIRDT limits. We show that the limiting PS correlation func-
tions obey different evolution laws. In the DRDT limit, they will will obey
the diffusion PDE’s of the GRDT model, but in the FIRDT limit, they will
not be described by the solution to an (evident) PDE.

4. PHYSICAL EXPLANATION OF TWO RAPID DECORRELATION
LIMITS

In the hope of clarifying the mathematical presentation in the suc-
ceeding sections, we offer here a heuristic picture of the advection of a
tracer in the small ¢ limit under both diffusive and fixed intensity rescalings
of the Poisson blob model.

We aim to establish concretely three points in this section.

1. A central limit in the environment should be expected in the
DRDT limit (Section 4.1). We have already discussed this in a general
context in Section 2, but we want to give a physical picture here for the
Poisson blob model to contrast with the FIRDT limit.

2. In the FIRDT limit, the tracer motion is intermittent and does not
have a central limit character in the ¢ \ 0 limit (Section 4.2).

3. Finally, we give in Section 4.3 a heuristic explanation for how the
second order correlation function for v(x, ¢) can have the same ¢ — 0 limit
under diffusive and fixed intensity rescaling when the nature of the advec-
tion is so radically different.
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4.1. Diffusive Rapid Decorrelation in Time (DRDT) Limit

Under diffusive rescaling of a Poisson blob model,

o (1) =), 95 (x =&, t—™),
n

¢ (x, 1) =& 2P(x, t/¢)

the ¢ \ 0 limit thins the blob function in the temporal direction and simul-
taneously increases the intensity of the Poisson point process ™ by a
factor of ¢~!. So as a tracer moves along during some fixed interval of time,
it will feel the effects of O(¢™") different blobs. While the tracer remains
within the confines of a given blob, it zooms through according to the local
value of the velocity, and exits the blob at some pretty much randomized
location. As the centers of the blobs are independently distributed, we can
suppose that, in the small ¢ limit, we can approximately treat the advection
of a tracer a sum of individual pushes from each blob it encounters.

Note that the tracer will be within any given blob for a typical time of
order &, which is the temporal width of the rescaled blob ¢{. (The time to
escape a blob by exiting its spatial domain is much larger (of order unity)
because the tracer motion through molecular diffusion in the x direction
does not speed up as ¢ —» 0). Within the blob, the tracer is advected by a
velocity field of magnitude scaling as ¢~'/?, and its motion is correlated
while it remains in a given blob. Hence, the random distance which a tracer
will move due to an encounter with a given blob will be of order &'/2. More
precisely, this random distance will have mean zero and variance propor-
tional to &. Summing up the effects of ¢! pushes from independent blobs
over an order unity time interval, we have an order unity total mean-
squared displacement. The DRDT limit thus leads to finite advection, and
the net displacement over order unity time intervals is roughly given by
a sum of a large number of independent kicks. This is exactly the kind of
situation in which a central limit theorem should apply, and the motion of
a tracer should be well described by a Brownian motion. This is why we
call this limit process “diffusive.”

4.2. Fixed Intensity Rapid Decorrelation in Time (FIRDT) Limit

Under the fixed intensity rescaling, the intensity of Poisson blobs is
held fixed while the blob functions are thinned in the temporal direction.
The fraction of space-time covered by Poisson blobs in a typical realization
will thus eventually scale proportionally to ¢ under fixed intensity rescaling.
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The velocity field will therefore be quiescent over most of the space-time
domain when ¢ is small. Consider then a tracer particle advected by a
Poisson blob velocity field rescaled under fixed intensity at small &. Most
of the time, the turbulence will be inactive and the tracer diffuses purely
through molecular means. But over an order unity duration of time, it will
encounter an order unity number of blobs which rapidly shove it. The time
a tracer will spend in any given blob is proportional to &, and the velocity
magnitude of a blob under fixed intensity rescaling is proportional to ¢!, so
the tracer will feel an order unity displacement from each blob encounter.
Since there is an order unity number of such kicks, we expect a nontrivial limit
for passive scalar advection in the ¢ — 0 limit under fixed intensity rescaling.

There is no reason to expect here the manifestation of a Central Limit
Theorem as there was for the DRDT limit. In an order unity time interval,
there are only order unity independent advection events (encounters with a
blob) in the FIRDT limit, even as ¢ — 0. The velocity field is very intermit-
tent (admittedly unrealistically so), and its effect on the passive scalar will
be rather peculiar. It would be wrong, as we shall see, to model it as an
effective diffusion.

A schematic comparison of a fixed intensity and diffusive rescaling of
the Poisson blob velocity field is shown in Fig. 1.

it

t t

Fig. 1. Top: Support of unscaled Poisson blobs. Left hand side: Support of Poisson blobs
distributed according to a fixed intensity rescaling. Right hand side: Support of Poisson blobs
distributed according to a diffusive (D) rescaling.
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4.3. Coincidence of Second Order Correlation Functions in
Two Limits

It may seem surprising that the Poisson blob velocity field obeys the
same second order statistics for the two rather different rapid decorrelation
in time limiting procedures (see (15)):

(e 1) v e s 1 41)) = O 1) v e 41
=¢'R(x, t/¢).

We showed this mathematically in Section 3, but wish to give a physical
explanation to provide further clarification of the rescalings.

The fact that the velocity field is becoming delta-correlated in time
in the & \ 0 limit under both diffusive and fixed intensity rescaling is clear
because the blobs are being thinned. As the spatial structure of the velocity
field is fixed in either limit process, it will suffice for pedagogical purposes
to explain why the variance of the velocity field scales as ¢~* for both limits.
Under diffusive rescaling, it is easily understood why the variance of the
velocity field scales as ¢ ': the velocity field amplitude is scaled as ¢~/ and
its mean square should scale as ¢~'. Under fixed intensity rescaling, on the
other hand, the amplitude of the velocity field is scaled as &', but the
velocity field is only active a fraction of the time proportional to &. Thus
the variance of the Poisson blob velocity field should rather be estimated as
¢ (on the order of the probability that the velocity field is actually active at
a given space-time location) multiplied by ¢ 2 (the mean-square amplitude
of the velocity field when it is active), and this yields ¢~'. Hence, the single-
point variance of the velocity field scales, under both diffusive and fixed
intensity rescaling, in inverse proportion to the effective correlation time ¢
of the velocity field.

5. PASSIVE SCALAR STATISTICS IN RAPID DECORRELATION
LIMITS

We now present the explicit mathematical difference between the
evolution of the passive scalar statistics in the DRDT and FIRDT limits of
the Poisson blob velocity field. We set up in Section 5.1 by introducing the
tracer particle trajectories associated with the advection-diffusion equation
in the Poisson blob model, and present the general explicit link between the
Nth order passive scalar correlation function and the joint statistics of the
motion of N tracer particles. We report in turn the passive scalar statistics
for the DRDT and FIRDT limits in Sections 5.2 and 5.3, deferring the
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derivations for later sections. We then discuss in Section 5.4 the nature of
the limiting statistics for each case, and contrast them. In Section 5.5, we
refer to the Levy—Khinchine theorem which sheds some light on the reason
for the different behavior of the passive scalar field in the two rapid
decorrelation in time limits.

The Poisson blob velocity field supplies a very clean illustration of the
fact that the statistical behavior of the passive scalar statistics in the limit
of short temporal correlations in the velocity field can depend very strongly
on how the limit is interpreted.

5.1. Tracer Particle Trajectories

It will be useful, both in the derivation and presentation of the results,
to introduce the N-particle transition density

N ,ja / 9 Aa / 5 1)
pn({xX"D, Pt | {xD, y P 1) (17)

which is defined as the joint probability density of the spatial distribution
of the locations of N tracers {(X(¢'), YV(¢')}}_, which were released at
positions

(X(j)(t), Y(j)(t)) = (x(j), t(j)) (18a)

at time ¢/ = ¢. These trajectories are determined from the stochastic differ-
ential equations:

dXO(s) = /2 dW 9 (s),
(18b)

dY D(s) = v(X 9(s), 5) ds+\/27c dw ) (s),

The {WP(s), W (s)}}_, are a collection of independent Wiener
processes (or Brownian motions), ref. 48, pp. 7-10 representing the effects
of molecular diffusion. The Wiener process W (s) is characterized as a con-
tinuous random process with W (0) =0, and all increments W (s)—W(s")
governed by a Gaussian distribution with zero mean and variance

W()-W(s)* =|s—5|.

Note that the statistics of the tracer trajectories are coupled through
the common random coefficient v. The N-particle transition density is
mathematically defined so that:
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Prob{(XV(¢'), Y(t)) € 4;, j=1,..., N |
X(j)(t) — x(j), Y(j)(t) — y(j)’ j= 1,..., N}

= L{ . PN({xl(j), y'(j)}; t | {x(j)’ y(j)}; t) d{x'(j)}j\;l d{y'(j) §V=1
1 N

for any Borel sets 4; € R*. (Braces without indices, such as {x"”, y’} are
implicitly defined to refer to the collection in which j ranges from 1 to N.)
It can be shown, by using the statistical properties of the Poisson point
process, the smoothness of the blob functions, and the first Borel-Cantelli
lemma, ref. 53, Section 4, that almost every realization of the random
Poisson blob shear velocity field will satisfy suitable smoothness and
growth conditions so that the theory of parabolic PDE’s®** and diffusion
processes®® guarantees that the N-particle transition density (17) exists as
a continous function for ¢’ # .

The N-particle transition density acts as a Green’s function for the
Nth order PS correlation function®V

Py({xD, yD}, 1) :j L o ({X9, Y30 {xD, y @Y 1)
R
X Py, o({x'?, yOY) d{x' DYV, d{y' P}, (19)

where

Py o({x'2, YO} = Py({x2, yP}, 1= 0)

is the initial data for the PS correlation function, which we assume to be
smooth and bounded. Note that the N-particle transition density appearing
in (19) involves the statistics of tracer trajectories moving backwards in
time. This is a consequence of the backwards Kolmogorov equation
(ref. 48, p. 105) which relates the solution of the parabolic advection-diffu-
sion equation (1) (with f = 0) to an average over statistics of tracer trajec-
tories moving backward in time. It is also possible to write down a
“forwards” transition density representation for Py,®V but this would be
less amenable to our method of analysis. To describe the evolution of the
PS correlation functions Py, it clearly suffices to describe the evolution of
the N-particle transition density py. We will therefore focus our attention
on the N-particle transition density since it is more fundamental. The con-
nection between the statistics of the Nth order passive scalar correlation
function P, and the joint statistics of N tracer trajectories was exploited in
various applications in refs. 10, 15, 16, 31, and 57.
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We call the Fourier transform of py with respect to the target
variables {x, y'"}:

ﬁN({”(j)a k(j)}a t, | {x(j)5 y(j)}a t)
= f d{x' O}, d{y P}
. . . - o N Dy () 4 g (D, ()
XPN({X’(]), y’(])}; ] {x(])’ y(])}; ) 2= n x" Y +k Dy D)
the N-particle characteristic function; it is indeed by definition equal to
<e2ﬂi2§\’=l (q(j)X(j)(t’)+k(j)Y(j)(t’))>’

where the trajectories have initial conditions (18a). The averaging here is
over both the velocity field statistics and the Wiener processes.

5.2. Diffusive Rapid Decorrelation in Time Limit

Recall the definition of the diffusively rescaled Poisson blob velocity
field ((10) and (11)):

vp(x, ) =¢" ”ZZ P(x—EM, (1—17)/e), (20)

with (%1, 7)) a Poisson point process of intensity ¢™' on RxR. We
indicated in (12) that this definition is equivalent to the general diffusive
rescaling (5). Let T (x, y, t) denote the (random) solution to the advection-
diffusion equation governed by the velocity field (20),

TS (x, y, 1)

oT¥ (x, y, t
x M5 2.0 _ o 470 (x., . 1),

dy (1)
TH(x, y,t=0) =Ty(x, y).

+08 (x, 1)

and let P{);, be the associated PS correlation functions, p{’;, be the
N-particle transition densities of the associated particle trajectories, and
Y p be the corresponding N-particle characteristic functions.

The limiting behavior of these statistical quantities are described in the

following proposition:

Proposition 2 (DRDT Limit). Under the diffusive rescaling (20):

1. Each N-particle characteristic function converges pointwise

hm ﬁgff?D({”(j)a k(j)}a t/ | {x(j)9 y(j)}9 t) =ﬁN,D({’7(j)9 k(j)}’ t’ | {x(j)s y(j)}s t),
eNo0
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where the limiting N-particle characteristic function is the unique classical
solution to the PDE:

0py,o({n?, k}, ' | {x©, yV}, 1)
ot

Sy DY 5DV 3 (22)
=K Z Aij,D+UN,DR({k ! }, {x })PN,D,
j=1

f’N D({”(j)’ k(j)}, P | {x(j), y(j)}’ t=t)= ezmzj":l (,,(i)x(j)+k(i)y(i)).

for ¢’ < t, where the “potential” Uy pr ({k}, {x}) is given by:

N N
UN,DR({k(j)}’ {x(j)}) = 272 Z Z k(m)k(n)R(x(m)_x(n))_ (23)

m=1 n=1

The function R(x) is defined as the integral over a constant x slice of the
second order spatio-temporal correlation function of the original Poisson
blob model:

R(x) = f: R(x, 1) dt.

2. The N-particle transition density converges weakly as a probabil-
ity measure (ref. 53, Section 25):

POLXD, YOV | {xD, yD}s 1) d{x' DYV, d{y" P},
= Py p({X'D, YOV 1 | {xD, yD}; 1) d{x' DY, d{y' P},

where the limit py p is an N-particle transition density corresponding to the
GRDT Model, with evolution equation for ¢ < #:

aﬁN’D({x'(j)’ y'(j)}, t | {x(j), y(j)}, t)

ot
=K§: 4.p +l§: iv:R(x(i)_x(j))azp—f\’,D (24a)
j=1 JEND 25 j=1 8y(’)6y(1)’
pN,D({x,(j)a y,(j)}’ t, | {x(j)9 y(j)}’ t, = t) (24b)

N
— H 5(x'(j)_x(j)) 5(y'(j) _y(j))'
j=1
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Moreover, py p is the N-particle characteristic function corresponding
to the N-particle transition density py p.

3. Each correlation function P{,({x?, y}, £) converges uniformly
over compact sets to a continuous function:

hm P%?D({x(j)a y(j)}a t) = PN,D({x(j)a y(j)}n t) (25)
eN0

which may be expressed in terms of the limiting N-particle transition
density in the usual manner:

Py p({x?, yP}, 1) = L@w Py o({(X"?, y P8 0 {x, y}; 1)
X Py,o({x"7, y'P}) d{x" P} L, d{y" P},

The limiting PS correlation functions Py , obey the same diffusion PDE’s
(24a) as py p.
To be clear, the differential operator 4; has the following meaning:
0? 0?
4, = Tt ~—.
o(x)? " a(y)

The proof of the proposition will be supplied in Section 7. We separately
stated the limiting behavior of the N-particle characteristic function to
facilitate comparison with the FIRDT limit, to which we turn next.

5.3. Fixed Intensity Rapid Decorrelation Limit

We now state the evolution of the passive scalar statistics in the rapid
decorrelation limit under fixed intensity rescaling ((13) and (14)):

t—1®
o =o' T (x-em =5) 26)
where (¢™,t™) is a Poisson point process of unit intensity on Rx R.
Let T (x, y, t) denote the (random) solution to the advection-diffusion
equation governed by this Poisson blob velocity field rescaled with fixed
intensity:

T (x, y, 1)

aT(S) LV, t
g T2 _ o 4@ (x, . 1),

dy 27)
TE(x, y, 1) =Ty(x, y, 1),

+0 (x, 1)
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and let P§)y be the associated PS correlation functions, p§'y be the
N-particle transition densities of the associated particle trajectories, and
P ¢ be the corresponding N-particle characteristic functions.

Then we have the following proposition about the FIRDT limiting
behavior of the passive scalar statistics:

Proposition 3 (FIRDT Limit). Under the fixed intensity rescaling
(26),

1. Each N-particle characteristic functions converges pointwise
lim Y e ({n?, KV}, | {xD, y}, 1)
eNo0
=ﬁN, FI({”(j)a k(j)}a t’ | {x(j)7 y(j)}a t):

where the limiting N-particle characteristic function is the unique classical
solution to the PDE:

aﬁN, FI({ﬂ(j)a k(j)}a t, | {x(j)a y(j)}a t)

ot
=k 3 Ao+ UK, (59D B 9
P, H({q(f']),_k(”}, 1 {xD, y0}, 1 =1) = > Y R )
for ¢ < t, where the “potential” Uy g ({k’}, {x}) is given by:
Uy m({kD}, {x}) = J: (e 2 EIS kb= _ 1) g¢ (29)

The function ¢(x) is defined as the integral over constant x slices of the
Poisson blob function:

F(x) = f_“; dt §(x, 1). (30)

2. The N-particle transition density converges weakly as a probabil-
ity measure:

PO (XD, yOY | {xD, y0Y; 1) d{x' P}V, d{y P}V,
= P (XD, YO} £ | {xD, yD}; 1) d{x' P}V, d{y P},
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where the limit py g is an N-particle transition density. Moreover, py g is
the N-particle characteristic function corresponding to the N-particle tran-
sition density py g

3. Each correlation function P§) ¢ ({x", y}, r) converges uniformly
over compact sets to a continuous function:

llIIl P%?FI({X(D’ y(j)}a t) = PN, FI({X(D’ y(j)}a t) (31)
eNo0

which may be expressed in terms of the limiting N-particle transition
density in the usual manner:

Pun(tx?, 3% 0= [ pus((x®, y 0} 0] {x, y0; 1

XPN,O({x’(j)a y’(j)}) d{x,(j)}?;l d{y,(j)}j‘\;l-

The proof will be given in Section 8.

5.4. Contrast of FIRDT and DRDT Limits

The import of the propositions just reported is that the FIRDT limit
of the passive scalar statistics differ vastly from the DRDT limit in the
Poisson blob model, even though the second order correlation functions of
the velocity field are identical in the two rapid decorrelation in time limits.

The limiting N-particle transition density in the DRDT limit, py p,
satisfies a diffusion PDE, as does the limiting N-point PS correlation func-
tion Py . These are just the GRDT model equations (see Section 3.2) for
the special case in which the velocity field is a shear flow and there is no
pumping. Indeed, when the velocity field is diffusively rescaled to a rapid
decorrelation in time limit, the tracer trajectories converge in distribution
to coupled Brownian motions. The diffusive rescaling thus leads to a dif-
fusive limiting behavior of the passive scalar which is well described by the
GRDT model equations.

On the other hand, the FIRDT limiting passive scalar statistics cannot
be expressed as the solution of a PDE. To see this, we consider the PDE’s
(22) and (28) for the limiting N-particle characteristic function. Both have
the form of a Schrodinger equation in imaginary time, with potentials

N N
Uy o ((k9}, {xP) =272 ¥ Y kKO R(x™ — x™),

m=1 n=1

Uy ({9}, {x9}) = f:’; (e72m‘2§v=1k,¢3(x17§)_ 1) dé.
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The important difference in these potentials is that the DRDT potential
Uy, pr is quadratic in {k’} while Uy g is some transcendental function of
{k}. Indeed, it is easy to see that py p({n, K}, ¢'| {x, yP}, ¢) and
Py e({nD, kDY, ¢ | {xP, yP},¢) each remain proportional to e* Zje1 kO
multiplied by some function independent of {y‘”}. Hence, multiplication of
Dy.p by 2mik" is equivalent to differentiation with respect to y. The fact
that Uy pr is quadratic in {k”} means that it is equivalent to a second
order differential operator, which yields the second order diffusion PDE
(24c) for py p. On the other hand, under the transformation 27ik"? — aya(].),
Uy, r1 does not become a simple differential operator since it is not a simple
polynomial in {k’}. It becomes instead some sort of pseudo-differential
operator.®® One could in this way endeavor to write down a pseudo-dif-
ferential evolution equation for the FIRDT limiting transition density py g
and the limiting PS correlation functions Py g, but we do not pursue this.

Since the first and second order statistics for the Poisson blob velocity
field are identical in the FIRDT and DRDT limits, the difference between
the limiting passive scalar statistics in the two scenarios must be due to the
higher order statistics of the velocity field. Note moreover that the DRDT
limiting statistics depends on the blob function ¢ only through the second
order statistics of the velocity field, as manifested in R(x) (see Section 3.3).
The higher order statistics of the velocity field are thus irrelevant for the
DRDT limit, so they must be relevant for the FIRDT limit.

A clear way to understand this outcome is that a ‘“central limit
theorem in the environment™ is active in the DRDT limit, but not in the
FIRDT limit. We discussed in Section 4.2 that in the FIRDT limit, a tracer
particle will only encounter an order unity number of blobs per time inter-
val, and thus no central limit theorem behavior could be expected. In fact,
the advection process was seen to be highly intermittent.

In the DRDT limit, on the other hand, a sample tracer will encounter
many small kicks in an order unity time interval, leading to a diffusive
behavior governed by the central limit theorem. As far as the passive scalar
is concerned, the velocity field is effectively Gaussian in the DRDT limit.
This can be seen explicitly by noting that, via the Feynman—Kac formula
(stated in Appendix B), the DRDT limiting N-particle characteristic func-
tion has the form, for ¢’ < t:

f’N,D({n(j), k(i)}; t | {x(i)’ y(j)}; t)

_ eZHi(Zj'V:I KDy Dy _an?e 2?’:1 &2 (1—1)

N i i N
x (X E)1 nPx D) g=20® 30 421 KK [y RXP5) =X s) as,_
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where:
X(i)(t’) =xW +./2K W;j)(t —_ t,)

the {W{(s)} are independent Wiener processes, and <-) denotes an
average over the statistics of the Wiener processes. On the other hand,
the N-particle characteristic function associated to a general mean zero,
homogenous, stationary, Gaussian random shear velocity field with corre-
lation function:

Ry(x, 1) = o(x', t') o(x'+x, £’ +1)>

is given, for ¢’ < ¢, by®®:

Do, kDY 1 [ {xD, yP}; 1)

— 2= Ky —an®e 5L (D) (1)

x (e 2721 10x ) p=20 50,2y KK [ [ Rg(X ™) =X (), 5-5) ds ass .
Thus, we manifestly see that the DRDT limit of the N-particle characteris-
tic function is exactly that which would be obtained by advection by a
Gaussian random shear flow which is delta-correlated in time:

R, (x, 1) = R(x) 8(¢).

5.5. Levy-Khinchine Theorem Perspective

The reason for the existence of distinct passive scalar behavior in
various rapid decorrelation limits of the velocity field can be understood by
consideration of the Levy—Khinchine theorem, see ref. 59, Section 3.2.
Loosely, this theorem says that a stationary random process of bounded
variation with no memory (i.e., with independent increments) is a combi-
nation of a mean drift, a Brownian motion, and a generalized version of a
Poisson process. The important point for our purposes is that Brownian
motion is not the only random process which has no memory.

It can be checked, using standard compactness arguments (as can be
found in ref. 60) that the statistical paths of N tracers in the Poisson blob
velocity field converge in distribution, under both diffusive and fixed
intensity rescaling, to certain random processes with N-particle transition
density given by py p and py g, respectively. (Convergence occurs in the
space of continuous paths in the DRDT limit but only in Skorohod space
in general in the FIRDT limit; see ref. 60). We know that py , satisfies the
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diffusion equation (24c) corresponding to the GRDT model, so in the
DRDT limit, the tracers move according to a coupled Brownian motion. "
On the other hand, the transition density py g of the FIRDT limiting
tracer motion does not obey the GRDT model rules. Consider the one-
particle transition density p;, ¢ and the corresponding one-particle charac-
teristic function for which we have the exact formula, for ¢’ < ¢:

f]l,FI(n, k; t,|x’ y’ t)

= exp ( — 4K+ (= 1)+ (1= 1) [ (O —1) dé), (32)

it is easily shown that the motion of a single tracer in the FIRDT limit has
independent increments, as it should. Upon comparison of (32) with the
discussion of the Levy—Khinchine theorem in ref. 59, Section 3.2, it is seen
that the FIRDT limiting motion of the tracer in the shearing direction (y)
is governed by a superposition of Brownian motion from molecular diffu-
sion and a generalized Poisson process from the Poisson blob velocity field.
Using our assumptions on the compact support of the Poisson blob func-
tion ¢, it can further be shown that this generalized Poisson process for the
single tracer motion is simply a piecewise constant random process with
jump times distributed according to a Poisson point process of finite inten-
sity, with each jump independently chosen from a fixed distribution. (To
put (32) in the canonical Levy—Khinchine form for the characteristic func-
tion of a stationary random process with independent increments, simply
change variables in the integral from & to z = ¢(£)). Note, by the way, that
the joint motion of N tracers is not described in either the DRDT or
FIRDT limit by an independent increment process because their relative
separation rate depends on their current relative separation.

We can now satisfactorily understand why the Poisson blob shear
velocity field has two distinct limiting advection behaviors. Under a diffu-
sive rescaling as in Section 2, a central limit theorem in the environment
applies and the Poisson blob velocity field acts very much like a Gaussian
delta-correlated velocity field. On the other hand, in the FIRDT limit, the
tracer always feels the Poisson point process underlying the blob distribu-
tion, even as the effective correlation time becomes zero. Consequently, the
passive scalar statistics do not converge to those of the GRDT model.

We next turn to the derivations of the propositions stated at the
beginning of this section. To prepare, we first derive a general formula for
the passive scalar statistics in unscaled Poisson blob Model in Section 6
and then consider the DRDT and FIRDT limits in Sections 7 and 8.
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6. PASSIVE SCALAR STATISTICS IN POISSON BLOB MODEL

The fundamental statistical object we will analyze is the N-particle
characteristic function, which can most concisely be expressed by:

({0 D, kDY, | {xD, y DY, 1) = (e = (’I(j)X(j)(t’)+k(j)Y(j)(t’))>’ (33)

where the tracer particle trajectories in a shear flow 7 are given by the
stochastic differential equations (18b), which may be explicitly integrated:

XD()=xD+ 2 WO (t—1"), (34a)
YO@) = y(j)—ft u(X9(s), ) ds+/2k W (t—1"), (34b)
.

where {W 9 (s), W (s)}I_, is a collection of independent Wiener proces-
ses. For the Poisson blob model statistics for the shear flow, the N-particle
characteristic function may be expressed in an almost explicit form, as first
demonstrated in ref. 34:

Proposition 4. For the Poisson blob shear flow velocity field
defined as in Section 3.1, the N-particle characteristic function is given by
the following formula:

ﬁN({”(j)’ k(j)}a t | {x(j)9 y(j)}’ t)
_ S KD a5, k) ) <e2"i =2 0x O
<exp [/{ jw 0 foo dé(e,zmzﬁ:l K [ ds 4OX ), s—) 1) ]> (35)
—» o w
where
X (s) = x4 /26 WOt —s), (36)

and <)y, denotes a statistical average over {WV(s)}\_,.

6.1. Proof of Formula for N-Particle Characteristic Function

Substituting the expressions for ¥ ¥)(¢') from (18a) into the definition
(33) of the N-particle characteristic function, we obtain:
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ﬁN({’?(j), k(j)}, t | {x(j), y(f)}’ t)

N Dy () pr N Ke)
_ <e2m(2i=l ”(])X(J)(t N+2mi(T7- k(])y(l))

x e~2m 21 kD £l oxs), 5) ds p =22 i I k(j)WE,j)(t—t’)>. (37)

This expression is to be averaged over the statistics of the velocity field as
well as the statistics of the Wiener processes {W (1)} Y-, and {W (1)} ,.
The averaging over the Wiener processes Wij)(t) may be performed expli-
citly, noting that these processes only appear in the last factor:

e RN k(j)WE,j)(t—t’)> _ e—4n2k = &) 1

Here we used the defining properties of the Wiener process (stated after
Eq. (18b)), and the formula for the characteristic function of a Gaussian
random variable Z with mean u and variance o2, ref. 53, p. 348:

. . 2,2 2
<82mAZ> — eZntlue—Zn Ao .

Next, the averaging over the Poisson statistics underlying the velocity field,
which only appears in the penultimate factor in Eq. (37), can be performed
through an application of the exact formula for the characteristic func-
tional of a Poisson point process (Proposition 10 in Appendix A.2):

iV (D)t ),
—2miY:_1k (X (s), 5) ds
<€ =t I >v

2 KD [y, px D) —E®, s— 1) g
= (e W E K[ Za px D) —E D s dsy
o0 00 . m j
= exp |:,1j dz '[ df(e—z’” Sk [ ds gx D)~ s—7) _ 1) :|
—00 —00

The realization of the random processes {X (s)};_, were held fixed during
this averaging over only the velocity statistics. The formula stated in the
proposition now follows.

7. DERIVATION OF PASSIVE SCALAR STATISTICS IN DRDT LIMT

Here we derive the limiting behavior of the passive scalar statistics
advected by a Poisson blob velocity field in the DRDT limit, as reported in
Proposition 2. This proposition may be viewed as a corollary of Theorem 3
stated in Section 2 concerning the convergence of passive scalar statistics to
those of the GRDT Model under a rapid decorrelation in time limit with
diffusive rescaling of general “mixing” velocity field models. But to provide
an explicit computation against which to compare the FIRDT limit, we will
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give a direct, self-contained proof utilizing the exact formula for the PS
correlation functions of a Poisson blob shear velocity field which were
developed in Section 6. Our proof generalizes the one given for the mean
passive scalar density (N = 1) in ref. 34.

Recall that under diffusive rescaling, the Poisson blob intensity is ¢~
and the rescaled blob function is (11):

1

¢85 (x, 1) =& *P(x, t/2).
The N-particle characteristic function ﬁf\}’?D associated to the diffusively
rescaled Poisson blob velocity field then has the following explicit formula
(for ¢’ < t), according to Proposition 4:

PO D, kDY, ¢ | {xD, y}, )

_ S KD —arie 52, k) ) <e2”i S2 i 0x O

') o] N (m) ¢t -1/2 (m)
X exp [S—IJ d‘cj dE(e= 2 Em=r K [ dse™ 24X W= =0)/0) 1)]> '
—00 —00

w
(38)
where:
X(j)(s) — x(i)+\/ﬂ W(j)(t—S). (39)

The main part of the derivation, presented in Section 7.1, is showing
that p%', converges pointwise to the limiting N-particle characteristic
function:

ﬁN,D({n(j)a k(j)}, t, | {x(j)a y(j)}a t)

= 221 kYD) —an®e 23 (D)2 (-1)

% <ezm‘2§V—1 1Px () exp |:ft Uy, or ({9}, {XO(s)}) ds :|> . (40)
t w
Here the “potential” is defined:

N N
UN,DR({k(j)}a {x(j)}) = 272 z z k(m)k(n)R(x(m)_x(n))

m=1 n=1

with R(x) given by (16).
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The PDE’s for py , and py p, are then shown to follow by the Feynman-—
Kac formula in Section 7.2. Finally, we mop up some technical details
concerning convergence in Section 7.3.

7.1. Convergence of N-Particle Characteristic Function in
DRDT Limit

We aim here to show that:

Claim 5. For¢ <z,
lim Y 5({72, kD), | {x9, yO}, 1) = By o (0D, kDY, 1] {xO, y0}, 1)
eNo

pointwise, with p, given by (38) and py. , given by (40).

To begin with, the ¢ \ 0 limit may certainly be brought inside the
expectation over Wiener processes by the bounded convergence theorem.

As we are anticipating a central limit theorem type result, we are
naturally led to Taylor expand complex exponentials through quadratic
order, as one does in the Fourier analysis proof of the ordinary central
limit theorem. Using Taylor’s theorem with remainder, we have the
following calculus inequality:

le*™ — (1+2mix —2n°x?)| < in® |x|? 41

for real x. We wish to apply this to the innermost exponential in (38). For
concise notation, let us denote the argument of the exponential by the
symbol Z©(&, 1):

ZOE 1) =712 i k™ Jt ds g(X™(s)—¢&, (s—1)/e). 42)

Z® depends on variables other than ¢ and 7, but we do not explicitly indi-
cate this dependence since the other variables may be considered fixed in
what follows. Using now the Taylor expansion (41), we have

lim &= J‘ dTJ df( 2wz 1) _ 1)

eNO0

= lim 5" j © de f Y dE 2miZOE, ) — 27X(ZO(E, 7))+ O(ZO(E, D)),
&N —0o0 —00 (43)
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with rigorous connotation of the order symbol O. Note that since ¢ is
integrable, we should expect only an O(¢) region of the s integral of Z® in
(42) to contribute significantly, and thus Z® is formally an O(¢'/?) quan-
tity. This explains why we could expect to stop the Taylor expansion (43)
after two terms.

We have three tasks before us:

1. First we shall show that the contribution from the error term is
indeed negligible.

lim ¢! f de j T dE1ZOE )P = 0. (44)

eN0 —

2. Then we will show that the term linear in Z®(¢, 1) vanishes
exactly.

¢! f Y j T dEZOE 1) =0, (45)
3. Third, we evaluate the ¢ \ 0 limit of the quadratic term:
tim 2% [~ ar [ a8z, 1)’ = [ Uy or (K}, {(XO(5)}) ds.
eN0 —o0 —o0 ¢
(46)

where Uy py is defined in (40).

Upon completing these, we will have shown that
lim 1353?])({,7(1)}’ {k(j)}, t| {x(f)}, {y(j)}, t)
eN0

= pno({n?} (k% ¢ 1{x}, {39}, 1)

where py p is defined in (40). This is what we desired for this subsection.
We are thus left to verify the three points outlined above.

7.1.1. First Substep: Asymptotic Negligibility of Error Term

To prove Eq. (44), change variables in the integral for Z®(&, 1) to
s'=s/e

ZOE, 1) =62 f k™ | j C X (s) =&, 5 —(t/e)) ds.
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Clearly:

N 0
ZOE DI < Y K| [~ ds sup g(x, ) <Ce? (47
m=1 —©

xeR

for some constant C independent of . Using this inequality for two factors
of Z®(¢&, 1) in the error term, we can bound:

et [" e [" aeizoe o
<c*[” ar " a1z o)

f kMGX (s = ¢, 5" —(z/e))| ds'.

0 0 t/e
<% ar| ae
—o0 —o0 /e |m=1

(48)

Using Fubini’s theorem, we integrate first over ¢ (which produces another
factor of &), then integrate over ¢ (which produces a e-independent con-
stant), and then finally over s’ (which just gives (¢—¢')/¢). In the end, we
can bound (48) by C’(t—1t') ¢'/?, where C is a constant independent of &.
We have thus shown that the error term in (43) is asymptotically negligible.
7.1.2. Second Substep: Vanishing of Linear Term

Next, the linear term in (43) vanishes as an immediate consequence of
the fact that the integral of ¢(x, ¢) over R x R vanishes.
7.1.3. Third Substep: Evaluation of Limit of Quadratic Term

We begin by writing down the meaning of Z® (42):

—on%e” [ de [T diz9¢ vy

N |” ar|” a L ds L ds’

m=1 n=1

X YX () =&, (s—1) /&) X () =&, (s =) /). (49)
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Changing variables 7/ = 7/¢ and using Fubini’s theorem, we obtain

— 2% j © dr j ©de(z9e, 1))?

N L L j' ds L’ ds [ av' [ ae

m=1 n=1

XX () =&, 5/e=1) X () =&, ' [e—T')

— 2—1N - (m)]-(n)
==2r%" Y Y k"k j

t

f ds Lt ds'

m=1 n=1

X R(X ™ ()= X"(s"), (s—5")/€). (50)

Now we take the ¢\ 0 limit of (50). As |R(x, 1) < R(0, 0) < co, we can
commute the limit inside the first integral, and the resulting limit can be
evaluated using Lemma 14 in Appendix B, since R(x, 7) is continuous with
compact support and X ¥)(s) is continuous in every realization. In this way,
we obtain Eq. (46) and achieve our first goal of showing that the diffusively
rescaled N-particle characteristic function |, converges pointwise to py p,
(Claim 5). We will show how this implies weak convergence of p§p, to py p
and uniform convergence P, to Py , on compact sets in Section 7.3, but
first we show that py p, Py p, and Py p solve the PDE’s stated in Proposi-
tion 2.

7.2. Derivation of PDEs for DRDT Limit

The PDE (22) for py p is obtained from (40) via the Feynman-Kac
formula. Indeed,

f)N,D({n(j), k(j)}, t, | {x(j)a y(j)}a t)

N .G LN D)y () pr
= 627”(2j=1 k(])y(})) <e2m Zj=l ”(])X(J)(t)

X exp [ [ <—4n2x i (k(”>2+ Uy, or ({K9}, {XO(s)})) dsD
G

where:

XD(s)=xD+ /26 WO(t—35).
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As Uy pr is bounded and uniformly Hélder continuous as a function of
{x?} (since R(x) is), the Feynman-Kac formula (Appendix B) may be
applied to deduce that py 1, is the unique classical solution to the PDE:

by, o({n?, K}, ' | {x©, y}, 1)
ot

N 0 N A A A .
- Z a(pz)]))2+<_4”2’c Z (k) + Uy, pr ({£}, {x(])})>171v,ns

j=1
- ) N (DD (D)
ﬁN,D({ﬂ(])a k(])}, ] {x(])’ y(])}’ t=1)= 2 1 x P+ kDY)

It is easily cheche(q either from this PDE or from (51) that py p, is always
equal to e*Ei=1¥"»") multiplied by a function independent of y. Hence,
multiplication of pyp by 2mik'? is precisely equivalent to differentiation

5 (J) From this observation, we obtain the imaginary-time Schrodinger

PDE for py p reported in (22), as well as the fact that py , satisfies the
PDE (24a). To show that py p, satisifes the PDE (24c), we express it as an
inverse Fourier integral of the manifestly integrable function py p:

DX,y DLt [{xD, y P} 1)
=£R2N B o({nD, kDY £ | {xD, y0; 1)
x e~ 2] ﬂ(j)X’(j)+k(j)y’(j))d{”(j)} A{kD}.

All that is required now is to justify that partial derivatives with respect to
{x©}, {y} and ¢ may be commuted inside the Fourier integral for 7 > ¢'.
To do this, one can use 1td’s formula to show that such derivatives of py p,
(51) are bounded and integrable as a function of {#’} and {k’} and then
apply a standard dominated convergence argument to finite difference
approximations.

7.3. Convergence of Correlation Functions in DRDT Limit

It remains to prove the weak convergence of the N-particle transition
densities p§';, to py p and the convergence of the P, ({x", y}, 1) to the
limiting form:

Py o({x, y9}, 1) = f,RzN Pu,p({x'D, P} 01 {xP, y}; 1)

XPN,O({xl(j)a y'(j)}) d{x'(j)}?;l d{y'(j)}?;l.
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But from (19), we can write:
POL{xD, yO0, 1) =£R2N POLUXD, YD} 0] {xD, yD}; 1)

XPN’O({X'(J')’ y'(j)}) d{x'(j)}j}f:l d{y'(j)}j}/:l’

where p{;, is the N-particle transition density under diffusive rescaling. By
definition, p%) n ({x"?, y'P}; 0] {x, yP}; 1) d{x'P} d{y'P} is precisely the
probability measure for the random variables:

X90)=xV+./2 W),
Y(0) =y —[ o) (XD (s), 5) ds-+/26 W (@),
0

and pYp({n?, k}; 0] {x, y}; 1) is the characteristic function for these
random variables. Here {W 9(r), W (¢)} ), is a collection of independent
Wiener processes.

Levy’s Continuity theorem (ref. 59, p. 130) states quite generally that
the pointwise convergence of a family of characteristic functions, which is
uniform in a neighborhood of the origin, implies weak convergence of the
corresponding probability measures to some limiting probability measure.
Moreover, this limiting probability measure has for its characteristic func-
tion the pointwise limit of the converging family of characteristic functions.
Now, we have shown in Section 7.1 the pointwise convergence of the
N-particle characteristic functions p{n({#?, k9}; 0| {x?, yP};7) to a
limit py p. Because of Ascoli’s Theorem (ref. 61, p. 169) and the bounded-
ness and equicontinuity of 5§, with respect to {#, K}, this convergence
is, for each {x", y”} and ¢, uniform on compact sets of #” and k. Thus
Levy’s Continuity Theorem is in force, and we have that the probability
measures pp,({x'?, y'P}; 01 {x?, yP}; 1) d{x'P} d{y" P} converge weakly
to a probability measure py p({x"?, y'P}; 0| {x©, yP}; 1) d{x' D} d{y' P},
which has characteristic function py . Because of the boundedness and
continuity of Py ,, this weak convergence of measures implies that:

lim PYp({xP, y@}, ) = lim j POo({x'D, YD} 0] {xD, yP; 1)
eN0 ’ en0 JRZV ’
X Py o({x'D, y"P}) d{x'P} ) d{y" P},
- JRZN P o({x'D, YD) 0] {xD, yD}; 1)

XPN,O({x,(j)r y’(j)}) d{x'(j)}j};l d{y’(j)}j_\;l
= PN,D({x(j)’ y(]')}’ t).
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To show that this convergence of P{p, to Py 1, is uniform on compact
sets, we use standard relations between smoothness and decay of Fourier
transform pairs to extract uniform integrability and moduli of continuity
estimates on py , for > ¢ from the explicit formula for py , (51). These
can be used to establish uniform convergence of the continuous functions
P, to Py on compact sets away from ¢=¢". To achieve a demonstra-
tion of continuity and uniform convergence on compact subsets of ¢ > ¢
which touch ¢ = ¢', one writes further uniform moduli of continuity estima-
tes using the continuity and boundedness of Py , and the very rapid decay
of Py p as £ ¢’ (which follows from the derivatives of py , with respect to
{n?, K} becoming very small). We omit the standard details.

8. DERIVATION OF PASSIVE SCALAR STATISTICS IN FIRDT LIMIT

In this section, we prove Proposition 3, in which we derived the
passive scalar statistics in the FIRDT (fixed intensity rapid decorrelation in
time limit). As in our proof of the DRDT limit, our main focus is on
proving the pointwise convergence of the N-particle characteristic function
ﬁﬁ?n associated to the velocity field rescaled with fixed intensity to a limit
ﬁN’ 1 Which obeys the PDE (28) stated in the proposition. At the end we
mention how to infer from this the convergence of the N-particle transition
densities p’; and the PS correlation functions P§y; corresponding to
fixed intensity rescaling.

8.1. Convergence of N-Particle Characteristic Function in
FIRDT Limit

Under the fixed intensity rescaling of the Poisson blob shear velocity
field, the blob placement intensity is held fixed at unity, and the blob func-
tion is rescaled according to (14). Thus, the N-particle characteristic func-
tion associated to the velocity field rescaled with fixed intensity is, accord-
ing to Proposition 4 in Section 6, given for ¢’ < ¢ by:

o) o L
p%, FI({”(])a k(])}’ t, I {x(J)a y(])}a t)
— o2mi(E] 1 KDy —anPie 2T () (-1 <ezm' PSEED SU (D)

X €Xp |:f°° de J‘oo df(e_zni St K ds e (X M) =&, (s—0) /) _ 1) ]>
— .

w

(52)
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with:

Xy = x4 /2 WO(1—1'). (53)
The reader may wish to contrast the appearance of ¢ in this formula with
the appearance of ¢ in the diffusively rescaled N-particle characteristic

functions (38).
Our aim in this subsection is to prove:

Claim 6. For¢ <1,
hm ﬁ%?FI({’?(j), k(j)}a t, | {x(j)’ y(j)}5 t) =ﬁN, FI({n(j)a k(j)}a t, | {x(j)’ y(j)}’ t)
eNo0
pointwise, where:

]%N,FI({”(j)’ KDY ¢ | {xD, y P}, 1)

= o2ri(X)= 1 Ky —tnle 3L, (D)2 (-1)

x <ezni2§vl 2 Dx Dy exp [_[,t UN, FI({k(j)}’ {X(j)(s)}) ds ] >W
with:

UN,FI({k(j)}’ {x(j)}) _ fjo (efznizfilk,&(x,fé)_ 1) dé,

#e =" dx.0)

To begin, the ¢ \ 0 limit may be taken inside the expectation of the
Wiener process in (52) by the bounded convergence theorem. We want
to bring the limit furthermore inside the integral over 7 and &. To do this,
we will use a generalized form of the Lebesgue’s Dominated Convergence
Theorem:

Lemma 7 (Generalized Lebesgue Dominated Convergence
Theorem). Let a sequence of functions f, approach a function f
pointwise almost everywhere in the limit # — co. Suppose that we can find a
sequence of integrable functions g, such that |f,| <g,, lim,_, g, =g, and

lim, ., [g,=[g Thenlim, . | f,={f.
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The proof may be found in ref. 61, p. 92.
We wish to find such a dominating sequence g,(&, 7) for the function:

p2mis ™! SV _ K ds g(xM(s)—¢, (s—7)/e) _ 1.

First, we use the simple geometric fact that the length of an arc of a circle
is longer than its chord, which, when applied to the complex plane, tells us
that:

e —1| < 27 |z

for real z. This gives us the estimate:

|e2 ™" Enar K ds dX =8 6=/ 1|

<o Y [ ds (X s) ¢, (=) /)] = 8.6, ).

We can use Lemma 14 in Appendix B to evaluate the &\ 0 limit of this
function, since ¢ is continuous with compact support and X (s) is con-
tinuous in every realization. Thus, we have:

g 1= hg(l) g 1)

0 if 7<s or 7>t
= (54)

203 KPP ™) -8 i s<t<t,

where

V= [ Igex ol dr.

The g, are thus a good dominating sequence if we can show:

lim [ dr j“; dé g L’ ds |p(X ™(s) =&, (s—1)/¢)|

eN0 J—o0

=[lar|” deyx -0
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But this is an easy consequence of Fubini’s theorem:

lim °°w de LO dé e j ds |p(X ™(s)—¢&, (s—1)/¢)|

eN0O J—

— lim ¢! j ds j: dé j_i At |p(X () =&, (s—1)/8)|

eNo

= lim dsj déj dr' |p(X™(s)=¢&, s/e—1")|

—hm dsf dE Y(X ™(s)=&).

We have therefore justified the passage of the ¢\ 0 limit all the way
inside the integral of the exponential. Our key task is thus to evaluate:

N t
lim ¢ Y k™ f ds (X ™(s) =&, (s—1)/e). (55)
eNo m=1 t

¢(x, t) is assumed continuous and uniformly integrable as a function of ¢,
and X ™(s) is continuous in every realization. Therefore, we may apply
Lemma 14 in Appendix B:

lim ¢! Z 3 f ds p(X ™ (s)—¢&, (s—1) /&)

eN0

() _
={¢(X (1)=& if r<t<t, 56
0 else,
where:
deo=[" drx.o. (57)

Using this result, we obtain pointwise convergence of p% r; to Py g1, as
we desired to show in this subsection (Claim 6).

8.2. Derivation of PDE for FIRDT Limit

The fact that the limiting N-particle characteristic function g%y is the
classical solution of the PDE (28) follows directly from the Feynman-Kac
formula in the same manner as we argued in Section 7.2 for the DRDT
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limit. One simply checks first that the potential Uy g({k?}, {x"}) is
bounded and uniformly Holder continuous on compact sets.

8.3. Convergence of Correlation Functions in DRDT Limit

The procedure to show that p§ ¢ converge weakly to py p and P g

converges uniformly on compact sets to the continuous function Py g
follows the same outline as in the DRDT Limit (Section 7.3).

APPENDIX A. PROPERTIES OF POISSON POINT PROCESS
A.1. Definition

Definition 8. The Poisson distribution for a random variable X
with range consisting of non-negative integer values is defined:

k

P(X=k)= e"/l—

KV (58)

where A is a parameter equal to the mean of X.

Definition 9. A Poisson point process of intensity J is defined as
a random array of points in the space considered with the following
properties:

¢ The number of points situated in two nonoverlapping regions 4 and
B are independent of each other.

e The number of points distributed in a Borel set 4 is given by a
random variable obeying the Poisson distribution with mean Am(A), where
m(A) is the Lebesgue measure of the set 4.

A.2. Functional Averages Involving Poisson Point Process

The characteristic functional (ref. 62, p. 282) of a Poisson point process
is given by:

B(F) = (2P0 (59)

where the x, are described by a Poisson point process of intensity A. The
characteristic functional is the random process or random field analogue of
the characteristic function of a random variable.
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The characteristic functional for a Poisson point process can be
evaluated in closed form:

Proposition 10 (Characteristic Functional, Poisson). If x, is a
Poisson point process of intensity 4 on a domain D, then its characteristic
function is given by:

(¥ TO — exp [/1 [ dx(e=ro—1) ] (60)
D
where F is an arbitrary continuous, bounded function which is integrable
on D.
Two consequences of this formula which will also be useful are:

Corollary 11. If x, is a Poisson point process of intensity 1 on a
domain D, then for any continuous, bounded, integrable function F on D,

<Z F(xn)>=,1f dx F(x) 61)

Corollary 12. 1If x, is a Poisson point process of intensity 4 on a
domain D, then for any continuous, bounded, integrable functions F and G
defined on D,

<Z F(x) Y, G(xnr)>

.y L) dx F(x) G(x) + 12 < fD dx F(x) >< fD dx’ G(x')>. (62)

A.2.1. Proof of Proposition

To prove (60) rigorously, one can first verify this formula for the case
where F is a smooth function of compact support; this is done in ref. 62,
p. 282. As such functions are dense in C(D) n L'(D), the proof can be
completed via the dominated convergence theorem.

A.2.2. Heuristic Derivation of Proposition

To provide some insight into the formula, we shall also outline a
heuristic derivation, skipping technical details. First, the characteristic
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function for a Poisson random variable X with mean A is found by a trite
calculation:

k

<e2m‘§X> — Z eZnikCP(X — k) — Z ezmkce—,1 % — exp[i(ezmé_ 1)] (63)
k=0 k=0 .

Now imagine that we partition D into little regions D, over which F(x)
does not vary much. The number of Poisson points within each interval
give a sequence of independent random variables, and thus we may fac-
torize the expectation appearing in (59) as a product of expectations over
each region D,. Let F, denote an average value of F(x) over D,; then:

¢(F) ~ l;[ <eZm‘Fk |x,,eDk|> (64)

But the random variable counting the number of Poisson points in the
domain Dy, |x, € I|, is given by a Poisson distribution with mean Am(D,).
Then as the number of the domains D, increases and their sizes shrink, we
have:

¢(F) ~ [ ] exp[Am(D,)(e* < —1)] ~ exp U dx Me¥F™ 1) } (65)

A.2.3. Proof of Corollaries

For the first corollary (Corollary 11), introduce the real parameter y;
(60) tells us that:

<e2ni/tz,, F(xn)> =exp [ij dx(eZniﬂF(X)_ 1) ]
D

Evaluation of the derivative of each side with respect to x4 at u =0 gives the
formula in the corollary. The possibility of commuting the derivative past
the expectation on the left hand side and the integral on the right hand is
guaranteed by the Lebesgue dominated convergence theorem, thanks to the
boundedness and integrability of F.

Similarly, for the second corollary (Corollary 12), we introduce the
real parameters u and y, and write from (60):

(¥ En W16, — exny [ 2 I dx (¥ HF@ 6 _ 1) ]
D
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Differentiation of each side with respect to u and p, and subsequent
evaluation at y =y =0, will yield the result stated in the corollary. Note
that F, G € L*(D) since they are each absolutely integrable and bounded.

APPENDIX B. USEFUL LEMMAS

Here we record two mathematical statements which are used in the
derivation of both the DRDT and FIRDT limits of the passive scalar sta-
tistics. The first is the Feynman—Kac formula, and the second is a general
statement concerning the limiting behavior of the integral of a function
which has a rapid decorrelation in time rescaling.

B.1. Feynman-Kac formula

Proposition 13. Under the conditions listed at the end of the
theorem, the Cauchy problem:

o(x, 1)
ot

Y(x, 1=0) =y (x)

on R¥x R, has a unique classical solution given by the “path integral”
formula:

=K AY(x, t)+c(x, 1) Y(x, 1),
(66)

050 = (KO exp ([ ds ek, 0.0 )) @D
with:
X, (s) = x+/2K W(1—5), (68)

where W(?) is a N-dimensional Wiener process. Sufficient smoothness
conditions on the coefficients and initial data are:

e K>0,

* ¢(x,t) is bounded and uniformly Holder continuous on compact
sets,

* ,(x) is bounded and continuous.

For a proof, see Theorems 6.4.6 and 6.5.2 of ref. 63.
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B.2. Auxiliary Rapid Decorrelation Lemma

Lemma 14. Let y(x,¢) be a continuous function of compact
support on R x R. Define:

b =" diy(x .

Then for any continuous function g(¢), and finite values of ¢, < t,,

1//(x+g(s)) for t;, <s<t,,
for s<t, or s>t,.
(69)

lim e—lf dt y(x+g(t), (t—s)/e) =

The idea of the lemma is that e '(x, t/¢) should approach Y(x) d(¢)
in the sense of generalized functions as ¢ \ 0. This lemma certainly holds
for more general functions Y(x, ) which are uniformly integrable along
constant x slices, but we only require consideration of functions of compact
support for the purposes of this paper.

Proof of Lemma 14. Change integration variables to u = =*:

e [ dtyx+g(0), (1=5)/0) = f: dup(x+g(s+eu),u).  (70)

Now if s < t,, we have:

s
LEJ dusup [Y(x,u)] >0 as &\O0

xeR

[ deve e, a7

because Y has compact support. A similar statement holds for s > ¢,. Thus,
we have proven the lemma for s < ¢, and for s > ¢,.

We now turn to the substantial case #; <s<1t,. Let y >0 be a given
small positive number. Because iy has compact support, there exists M < oo
so that:

W(x,u)=0  for |ul>M. (71)

The continuity of y(x, u) and g(¢), along with the compact support of 1,
implies that there exists d(y) > 0 so that:

sup sup |Y(x+gu+u), u)—y(x+g(u), )| <y/2M for |u'|<é.
<M xeR (72)
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It follows that for:

0 <e<min (S_tl h—s @>

M’> M’ M
we have:

ty—s

LL duy(x+g(s+eu), u) —Jjo duy(x+g(s), u)

&

= U_A; duy(x+g(s+eu), u) —Jj{ duy(x+g(s), u)

< f: du | (x+ g (s +eu), u) —Y(x+g(s), )|

y
IM =,
<“MomT? (73)

Since y > 0 was arbitrary, we have:

lim j: dup(x+gls+en),u) =" duy(r+g(s), ) =J(x+g(s) (74)

by definition of . This concludes the proof of the lemma.
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